Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mem Inst Oswaldo Cruz ; 117: e220239, 2023.
Article in English | MEDLINE | ID: covidwho-2244259

ABSTRACT

Laboratory animals are essential mainly for experiments aiming to study pathogenesis and evaluate antivirals and vaccines against emerging human infectious diseases. Preclinical studies of coronavirus disease 19 (COVID-19) pathogenesis have used several animal species as models: transgenic human ACE2 mice (K18 mice), inbred BALB/c or C57BL/6N mice, ferrets, minks, domestic cats and dogs, hamsters, and macaques. However, the choice of an animal model relies on several limitations. Besides the host susceptibility, the researcher's experience with animal model management and the correct interpretation of clinical and laboratory records are crucial to succeed in preclinical translational research. Here, we summarise pathological and clinical findings correlated with virological data and immunological changes observed from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experimental infections using different well-established SARS-CoV-2 animal model species. This essay aims to critically evaluate the current state of animal model translation to clinical data, as described in the human SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cats , Cricetinae , Dogs , Humans , Mice , Disease Models, Animal , Ferrets , Mice, Inbred C57BL , Mice, Transgenic
2.
iScience ; 24(11): 103315, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1474644

ABSTRACT

We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.

SELECTION OF CITATIONS
SEARCH DETAIL